Austrian-Style Gasoline Price Regulation: How It May Backfire

4th Workshop on Consumer Search HSE, Moscow 2013

Martin Obradovits

University of Vienna VGSE, Department of Economics

May 31, 2013

Motivation I/II

- High and volatile fuel prices: ongoing debates in public, media, politics
- Suspicious to antitrust authorities; abuse of market power?

 \Rightarrow Regulatory price interventions in several countries

- E.g. Austria, Luxembourg, Western Australia, Canada, Mexico
- **Direct** price regulations (LU, CA, MX) vs. regulation of **price variance** (AT, AU)

Motivation II/II

Austrian law (Since Jan. 2011)

Retail gasoline prices may only be increased once per day and simultaneously at noon, but may be decreased anytime.

• Virtually identical policies intensively discussed in Germany and New York State

• Antitrust objective:

- Decrease consumer price uncertainty, hence...
- ...make it easier for consumers to assess and evaluate prices, hence...
- …foster competition and increase consumer surplus in the market.

Key Idea to Model

- Firm's scope of setting prices restricted by policy
- Choosing low price at noon: low margins for rest of day
- May want to price high in beginning of cycle to maintain **pricing flexibility** later on
- But: **possible pro-competitive effect later in cycle** due to price ceilings and harsher competition
- $\bullet~{\sf Net}~{\sf effect}~{\sf on}~{\sf consumer}~{\sf surplus}~{\sf unclear} \to {\sf Model}$

Main Results: Policy Implications Under Different Setups

- Consumers' purchase period **exogenous**; **unit** demand:
 - Price distortions across periods; aggregate expected consumer surplus and firm profits unchanged
- Consumers' purchase period endogenous; unit demand:
 - Some consumers optimally wait for lower prices despite different preference
 - Firms profits unchanged no matter how many consumers wait
 - Total consumer surplus unambiguously reduced

Related Literature

- Direct extension of Varian (1980)'s model of price dispersion in homogeneous goods market
- Consumer search with **regulatory price ceilings**: Fershtman and Fishman (1994), Rauh (2004), Armstrong et al. (2009)
- Austrian policy (experimental and empirical): Haucap and Müller (2012), Berninghaus et al. (2012), Dewenter and Heimeshoff (2012)
- Intertemporal consumer search in gasoline markets (empirical): Noel (2012)

Model Setup

- Firm duopoly: *i* = 1,2; two periods: *t* = 1,2 (one price setting cycle)
- Price competition, homogeneous good, zero unit cost
- Austrian policy. In t = 1 (noon): may choose any price they want; in t = 2: cannot exceed first period price
- **Consumers**: unit demand up to valuation v > 0
- Fraction $\kappa \in (0,1)$ purchases in t = 1, fraction 1κ in t = 2 (endogenized later)
- In each period, fraction $\lambda \in (0,1)$ of consumers **informed**; buy at cheapest firm. 1λ **uninformed**; buy at random firm

Solution: SPNE

Equilibrium of the Second Stage

Suppose firms chose prices p_1 and $p_2 < p_1$ in t = 1

Proposition

If $\frac{p_1}{p_2} < \frac{1+\lambda}{1-\lambda}$, in the unique equilibrium of the subgame, the firms keep charging their first period price with mass point $\alpha \in (0, 1)$ and randomize over the common price range $[\underline{p}, p_2]$ with probability $1 - \alpha$ according to the identical distribution F(p). Expected profits are $(1 - \kappa)\frac{1-\lambda}{2}p_1$ for each firm.

- Expected t = 2 firm profits are identical and proportional to **maximum** price chosen in t = 1
- Firm incentive to soften price competition in t = 1: harsh competition significantly hurts t = 2 profits

Equilibrium Actions of the First Stage

- Firms identical: Consider symmetric equilibrium distributions G(p)
- Standard undercutting arguments: No mass points or holes; largest price in support v. By first proposition:

•
$$\Pi_i^{tot}(v; G(p)) = \kappa \frac{1-\lambda}{2}v + (1-\kappa)\frac{1-\lambda}{2}v = \frac{1-\lambda}{2}v$$

$$\mathbb{E}\Pi_{i}^{tot}(p; G(p)) = G(p) \qquad \left[\kappa \frac{1-\lambda}{2}p + (1-\kappa)\frac{1-\lambda}{2}p\right] + (1-G(p)) \qquad \left[\kappa \frac{1+\lambda}{2}p + (1-\kappa)\frac{1-\lambda}{2}\mathbb{E}_{\mathbb{G}}(\tilde{p}|\tilde{p} \ge p)\right]$$

Setting expressions equal and solving gives first period equilibrium distribution G(p)

Main Properties of Equilibrium I/II

First Period Prices

The more consumers purchase in t = 1, the lower the prices that are chosen in that period (in a probabilistic sense).

Intuition: More consumers in $t = 1 \rightarrow$ having high market share in t = 2 relatively less important \rightarrow intensified competition in t = 1

Limit Results

As $\kappa \to 0$, $p_i = v$ in t = 1. As $\kappa \to 1$, firms price like in unregulated regime.

Hence, for any $\kappa < 1$, first period consumers worse off under regulation

Main Properties of Equilibrium II/II

Second Period Prices

Prices in the second period are probabilistically lower than without the regulation.

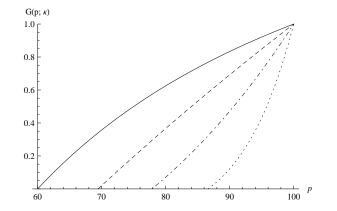
Hence, second period consumers better off under regulation

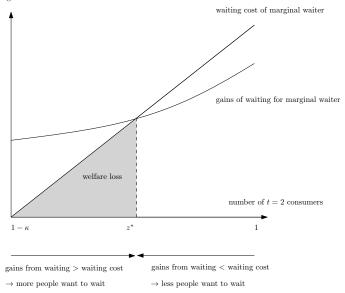
Countervailing Effects

Aggregate expected firm profits and consumer surplus unaffected by policy and invariant to changes in intertemporal consumer distribution κ .

Firms equilibrating strategies such that expected profits constant irrespective of κ

Example: First Period Equilibrium Price Distributions




Figure : Equilibrium price distributions $F_0(p)$ (solid) and $G(p;\kappa)$ for $\kappa = 0.5$ (dashed), $\kappa = 0.25$ (dashed-dotted) and $\kappa = 0.1$ (dotted). v = 100, $\lambda = 0.25$.

Endogenizing Consumers' Purchase Period

- Exogenous intertemporal consumer distribution: Prices lower in t = 2, yet not everybody purchases then
- One justification: Heterogeneous consumer preferences
 - κ consumers prefer purchasing in t = 1, 1κ consumers in t = 2
 - κ consumers: have disutility of delaying purchase until t = 2 following some distribution
- All 1κ consumers purchase in t = 2: preference and lower prices
- κ consumers face tradeoff: compare individual gains from delaying purchase with cost of waiting
- Equilibrium: intertemporal consumer distribution such that nobody gains from waiting anymore

Illustration: Equilibrium Intertemporal Distribution

gains from waiting waiting cost

Welfare Loss Caused by the Policy

Proposition

The Austrian policy unambiguously leads to a decrease of consumer surplus and total social welfare. The total loss of welfare is given by the aggregate disutility incurred by purchase-delaying consumers.

Note: Aggregate welfare loss can be substantial. Example in paper: 7.3% of total CS

Intuition

- Firms' equilibrating strategies: Aggregate expected firm profits independent of intertemporal consumer distribution
- Due to **unit demand**: *Gross* gain of every waiting consumer must equal aggregate loss of all other consumers
- But: Optimally switching consumers do not realize full gain of waiting; part lost due to disutility!
- Negative externality: The fewer consumers purchase in t = 1, the less aggressive firm's pricing in both t = 1 and t = 2

Other Results

- **Paradox**: lower waiting cost for everybody can result in higher welfare loss
- Policy harms inflexible / unknowing consumers: critical threshold of waiting cost. Consumer with waiting cost $< W_{crit}$ benefit from policy, all others hurt
- If everybody delays purchase: everybody hurt except consumers with zero waiting cost

Summary

- Analysis of **real-world price regulation** in consumer-search framework
- Two-period duopoly model; **firms' pricing restricted** in second period according to **Austrian rule**
- If consumers' purchase time is exogenous, policy leads to price distortions that are welfare neutral on aggregate
- If consumers' purchase time is endogenized, policy leads to unambiguously lower consumer surplus
- Model casts doubts on whether Austrian policy can effectively increase consumer surplus