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> A single-good, first-price auction with common values
. novel feature: the number of bidders is endogenous:

> Seller (auctioneer) knows the value and solicits bidders at some costs

> Buyers (bidders) privately observe noisy signals;
number of solicited bidders unobservable

» The number of solicited bidders depends endogenously on the value,
which leads to a “Solicitation Effect” (sometimes “solicitation curse”).
The solicitation effect is a key difference to standard common value

auctions.

» Two objectives:
> Some understanding of equilibrium in this environment
> Revisit information aggregation in large auction (Milgrom 1979)
When solicitation costs are small, auction is endogeneously large
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Alternative Interpretation

Simultaneous (“Noisy”) Search
Our model can be interpreted as a batch search model as in Burdett-Judd
(1983), with the added feature of adverse selection.



Model (1): Seller and Buyers

v

A single seller and N buyers

v

Seller's cost ¢ = 0 is commonly known

v

Seller's type w € {L, H}; prior probabilities p, and py

v

Buyers have common values,
VWG{V/_,VH}, c<y <vy

> w is private information of the seller



Model (2): Signal Distribution

» Each buyer observes signal x € [x, X]

> conditional on type w, signals are independent and identically distributed
> atomless c.d.f. G, admits a density gy, that is strictly positive on [x, X]

» Likelihood ratio gfz((j)) is weakly increasing;
likelihood ratio is right-continuous at x and left-continuous on (x,X]

» Most favorable signal is x. Signals boundedly informative,

O<gH(5) <1<gH(>_<)

gL (x) gL (%) =




Model (3): First Price Auction with Bidder Solicitation

1. Seller knows w; solicits n randomly drawn bidders at marginal
costs >0, with ne {1,..., N}, N > v?"’

2. Each solicited bidder privately observes a signal x ~ G,
w and n unobservable to buyers

3. Solicited bidders submit bids simultaneously.
4. Highest bidder wins; ties are broken randomly
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Model (3): First Price Auction with Bidder Solicitation

1. Seller knows w; solicits n randomly drawn bidders at marginal
costs >0, with ne {1,..., N}, N > v?"’

2. Each solicited bidder privately observes a signal x ~ G,
w and n unobservable to buyers

3. Solicited bidders submit bids simultaneously.
4. Highest bidder wins; ties are broken randomly

Payoffs when p is the winning bid:
Winning Bidder: v,, — p;  Other Buyers: 0; Seller: p—c — ns

> Study equilibrium winning bid when s is small.
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Interim Beliefs and Solicitation Effect
» A pure solicitation strategy is (n;, ny) € {1,...., N} x {1,...., N}.

» Conditional on signal x and being solicited, the probability of w = H is

PrgH () HWH P &L(x) n
8L (x) % +poy8H (x) "WH 14 L 8n(X)ny

» The ratio 22 captures “solicitation effect”

» Solicitation is bad news ("curse") if ';—’Z <1
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Bidding Equilibrium

A symmetric and pure bidding equilibrium given solicitation strategy
(ng, ny) is a bidding strategy 8 : [x, X] — R such that for all x € [x, X],
b = B (x) maximizes interim expected payoffs.

Equivalent to equilibrium of standard common value auction if ny = n; = n
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Example of a Bidding Equilibrium

» Values v; = 0 and vy = 1; Uniform prior, py; = o, = %
» Signals x € [x, x| = [0, 1]
> gy (x) =0.840.4x and g; (x) = 1.2 —0.4x

Claim: Let N = 10 and solicitation strategy n; = 6 and ny = 2.
There is a bidding equilibrium in which

B(x)=0.4 Vx € [x,X].
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Verification |[:
X = 1 has no incentive to overbid atom at 0.4

Claim: x =
> Interim expected value conditional on X = 1 and being solicited
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Verification |[:
X = 1 has no incentive to overbid atom at 0.4
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» The solicitation effect offsets the informational content of the signal
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Verification |I: No Incentives to Overbid Atom

Claim: x = 1 has no incentive to overbid atom at 0.4.

> Interim expected value conditional on x = 1 and being solicited:

Pr &H(X)

1 + PL gL(Y)% — 04 %% (1)_}
L4 ew ey P e @y T T 32 T3
P gL(x) ne pr gL(X) L 26

» The solicitation effect offsets the informational content of the signal:

nigH(X) 23 1

ng gL()_() _65_2

» Generally, solicitation curse is “overwhelming” if

gH (%) n

— < 1.
gL (x) ng




Verification IlI: No Incentive to Undercut Atom

Claim: x has no incentive to undercut the atom.
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Claim: x has no incentive to undercut the atom.

» Expected value conditional on x, conditional on being solicited, and
conditional on winning at p* = 0.4 is

1
Lg/-/((i)) L ”H((P:)) 222
1 PL g (x) np my(p _ 6 _
14+ PH 810 1y T () vi+ 14 PH 810 ny TR () VH= T 1=04
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» Thus, x expects (weakly) positive payoffs from bidding 0.4.



Verification IlI: No Incentive to Undercut Atom

Claim: x has no incentive to undercut the atom.

» Expected value conditional on x, conditional on being solicited, and
conditional on winning at p* = 0.4 is

1
Lg/-/((i)) L ”H((P:)) 222
1 PL g (x) np my(p _ 6 _
1+ PH 8HX) 1y T4 (P7) v+ 14 PH EHC) 7y T (PF) VH = 221 1=04
oL g (x) L 7 (pF) L g (x) L 7 (p%) 1+§6%

» Thus, x expects (weakly) positive payoffs from bidding 0.4.

1
Lo Pr[Win|H] ny 1
n n J— — 2 —
» Winning is "good news, Wl — L 1= 3.

n
» Bidding in Atoms provides insurance ( “hiding in the crowd”) given
uniform tie-breaking rule.
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Observations

> Whenever ',’7—:’ = % and ny > 2 there is a bidding equilibrium where all
bidders bid b € [1/3,0.4].

» Complete pooling even with arbitrarily many solicited bidders and even
if Gy (%) arbitrarily small.

> If nj = 3ny and ny is sufficiently large, there exists no equilibrium in

strictly increasing strategies. Atoms are “unavoidable.”

» Construction is not an equilibrium. Seller's solitication strategy not
optimal.
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Equilibrium

A symmetric and pure strategy equilibrium consists of a bidding strategy
B : [x,%x] — R and a solicitation strategy (n;, ny) such that

(i) B is a bidding equilibrium given solicitation strategy (n;, ny);

(ii) solicitation is optimal,

ny € arg ne{rln,?.)i'} [E [p|n,w, B] —c — ns].



Equilibrium

A symmetric and pure strategy equilibrium consists of a bidding strategy
B : [x,%x] — R and a solicitation strategy (n;, ny) such that

(i) B is a bidding equilibrium given solicitation strategy (n;, ny);
(ii) solicitation is optimal,

ny €arg  max __[E[p|n,w,B] —c—ns].
ne{l ...... N}

An equilibrium (without qualifier) allows for mixed solicitation strategy,
denoted 17, € A{1,..., N}.
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Existence of Equilibrium: Good News / Bad News

» Atoms on the equilibrium path upset standard methods for existence
proofs

> In paper, discretize bid set
> Here: Good News / Bad News

gr (x) ?Z(()__()) if x>X%
g (x) ) & g <k

[\
~

=
J
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» Good News/Bad News: gy (x) /gy (x) constant on [0, %], (%, X]
» Symmetric Signals: G; (X) =1— Gy (%)
» Sufficiently Informative: Gy (%) < 0.3

Proposition. Complete Pooling Possible in the Limit
Suppose signals are as described before. Then, for all {s¥}, limj_, s¥ = 0,
there exists a sequence of equilibria {B¥, 7} such that

fim E (plnfy. H.B%] = lim E [plnf. L8] < pyvi +ppvi.
—00 k—00

» Auction does not become “competitive”

> Gy (X) can be arbitrarily small, i.e., signals can be arbitrarily informative
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Pooling Equilibrium Structure

» Bidding is step function,

b if x>%,
bk if x< %

k
B (x) =

» With bids b¥ < b, and
lim bX < b < ove tPHVH.

k—o0

» When sk — 0, solicitation strategy such that both types

> solicit unboundedly many bidders
> end up trading almost surely at b
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(6L (N (=6 (x) (B—bF) = s

k
L



Pooling: Sampling
> Idea: Given step-function, soliciation strategy (nf;, nf) is optimal if
(6L (3" (1= 6 (%) (B—b") = s

(G (%) (1= G (%)) (B-b*) = s



Pooling: Sampling
> Idea: Given step-function, soliciation strategy (nf;, nf) is optimal if

(6L (3" (1= 6 (%) (B—b") = s

(G (%) (1= G (%)) (B-b*) = s

k

k

» This implies
nLInGL( £)+In(1—Gp (% ))_nHInGH( £)+1In(1— Gy (X))

» Taking limits and re-ordering



Pooling: Sampling
> Idea: Given step-function, soliciation strategy (nf;, nf) is optimal if

(6L (3" (1= 6 (%) (B—b") = s

(G (%) (1= G (%)) (B-b*) = s

k

k

» This implies
nLInGL( £)+In(1—Gp (% ))_nHInGH( £)+1In(1— Gy (X))

» Taking limits and re-ordering




Pooling: Sampling

> Idea: Given step-function, soliciation strategy (nf;, nf) is optimal if
(GL(3))"(1- 6 (%) (B—bF) = s
(G (%) (1= Gy () (B—b*) = s*

» This implies

nfIn Gy (%) +1In (1= G (%)) = nf;In Gy (%) +In (1= Gy (%))

» Taking limits and re-ordering

lim H
k—oo n
gH(x) 1-Gp(%)
> From o % = 6.
. k
n
8H (X) lim H




Pooling: Sampling
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Pooling: Sampling
» Idea: Given step-function, soliciation strategy (nﬁ n’L‘) is optimal if
(G 6t (1= G (3) (b-bF) = o
(Gh (%)™ (1= G (%)) (B—gk) — Sk

» This implies
nLInGL( £)+In(1—Gp (% ))_nHInGH( £)+1In(1— Gy (X))
» Taking limits and re-ordering

v

This last observation holds generally.
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Pooling: Bidding
Step 1: No incentives of overbid b if b close to p, v; + pyvy

> Seller’s optimality implies that:

) ok

EH . H
lim —t < 1.
81 ()_<) k—o0 nlz

—
I

» Therefore

klim E [v|solicited, signal X] < p,v| +pyvy

Step 2: No incentives of undercut b¥ — b < O VL +PHVH

» Observe that

klim E [v|solicited, signal X, win at b] = p, v, + pyvH
—00
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Conclusion

» Introduced common values auction with bidder solicitation

» Endogenous relationship between value and number of bidders:
Identified “solicitation curse”

v

Bidding equilibria with state-dependent number of bidders are different

v

Multiple limit outcomes (in a "two-signal" example):

> Perfect pooling
» (Partial) separation

Auction with Solicition “in between” Auction and Search:

v

> Large Standard Auction: Always (Partial)Separation
> Sequential Search: Always Separation

Outlook and Related Questions
> Relation of number of solicited bidders and type?
Who solicits more? Can there be a “solicitation blessing”?

» What happens when number of solicited bidders observable? Incentive
to signal? Trade-offs?
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Bidding Strategies are Weakly Monotone

Lemma. Given any solicitation strategy (77,,1,) such that each type solicits
at least two bidders, i.e., 7, (1) =1, (1) = 0. Then, in every bidding
gu(x1)  gH(xe)

equilibrium, 282222 >

20~ g implies B (x1) > B (x2) for almost all x1, xp.

Counterexample: Suppose 77, (1) =1 and #, (1) = 0. Then, in every
2

bidding equilibrium, % > %, implies B (x1) < B (x2) for almost all
X1, X2.

Intuition: Consider gn(x) _ 0 and &%) —
gL(x)
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