A Common Value Auction with Bidder Solicitation

Search and Switching Cost Workshop, Moscow

Stephan Lauermann, University of Michigan Asher Wolinsky, Northwestern University

June 2012

► A single-good, first-price auction with common values

- A single-good, first-price auction with common values novel feature: the number of bidders is *endogenous*:
 - Seller (auctioneer) knows the value and solicits bidders at some costs
 - Buyers (bidders) privately observe noisy signals; number of solicited bidders unobservable

- A single-good, first-price auction with common values novel feature: the number of bidders is *endogenous*:
 - Seller (auctioneer) knows the value and solicits bidders at some costs
 - Buyers (bidders) privately observe noisy signals; number of solicited bidders unobservable
- The number of solicited bidders depends endogenously on the value, which leads to a "Solicitation Effect" (sometimes "solicitation curse"). The solicitation effect is a key difference to standard common value auctions.

- A single-good, first-price auction with common values novel feature: the number of bidders is *endogenous*:
 - Seller (auctioneer) knows the value and solicits bidders at some costs
 - Buyers (bidders) privately observe noisy signals; number of solicited bidders unobservable
- The number of solicited bidders depends endogenously on the value, which leads to a "Solicitation Effect" (sometimes "solicitation curse"). The solicitation effect is a key difference to standard common value auctions.
- Two objectives:
 - Some understanding of equilibrium in this environment
 - Revisit information aggregation in large auction (Milgrom 1979)
 When solicitation costs are small, auction is endogeneously large

Alternative Interpretation

Alternative Interpretation

Simultaneous ("Noisy") Search

Our model can be interpreted as a batch search model as in Burdett-Judd (1983), with the added feature of adverse selection.

Model (1): Seller and Buyers

- A single seller and \bar{N} buyers
- Seller's cost c = 0 is commonly known
- ▶ Seller's type $w \in \{L, H\}$; prior probabilities ρ_L and ρ_H
- Buyers have common values,

$$v_w \in \{v_L, v_H\}$$
, $c \leq v_L < v_H$

w is private information of the seller

Model (2): Signal Distribution

• Each buyer observes signal $x \in [\underline{x}, \overline{x}]$

- conditional on type w, signals are independent and identically distributed
- atomless c.d.f. G_w admits a density g_w that is strictly positive on $[\underline{x}, \overline{x}]$
- Likelihood ratio ^{g_H(x)}/_{g_L(x)} is weakly increasing;
 likelihood ratio is right-continuous at <u>x</u> and left-continuous on (<u>x</u>, x̄]
- Most favorable signal is \bar{x} . Signals boundedly informative,

$$0 < \frac{g_{H}\left(\underline{x}\right)}{g_{L}\left(\underline{x}\right)} < 1 < \frac{g_{H}\left(\bar{x}\right)}{g_{L}\left(\bar{x}\right)} < \infty$$

- 1. Seller knows w; solicits n randomly drawn bidders at marginal $\cot s > 0$, with $n \in \{1, ..., \overline{N}\}$, $\overline{N} \ge \frac{v_H}{s}$.
- 2. Each solicited bidder privately observes a signal $x \sim G_w$ w and n unobservable to buyers
- 3. Solicited bidders submit bids simultaneously.
- 4. Highest bidder wins; ties are broken randomly

- 1. Seller knows w; solicits n randomly drawn bidders at marginal $\cot s > 0$, with $n \in \{1, ..., \overline{N}\}, \ \overline{N} \ge \frac{v_H}{s}$.
- 2. Each solicited bidder privately observes a signal $x \sim G_w$ w and n unobservable to buyers
- 3. Solicited bidders submit bids simultaneously.
- 4. Highest bidder wins; ties are broken randomly

Payoffs when p is the winning bid: Winning Bidder: $v_w - p$; Other Buyers: 0; Seller: p - c - ns

- 1. Seller knows w; solicits n randomly drawn bidders at marginal $\cot s > 0$, with $n \in \{1, ..., \overline{N}\}, \ \overline{N} \ge \frac{v_H}{s}$.
- 2. Each solicited bidder privately observes a signal $x \sim G_w$ w and n unobservable to buyers
- 3. Solicited bidders submit bids simultaneously.
- 4. Highest bidder wins; ties are broken randomly

Payoffs when p is the winning bid: Winning Bidder: $v_w - p$; Other Buyers: 0; Seller: p - c - ns

- 1. Seller knows w; solicits n randomly drawn bidders at marginal $\cot s > 0$, with $n \in \{1, ..., \overline{N}\}, \ \overline{N} \ge \frac{v_H}{s}$.
- 2. Each solicited bidder privately observes a signal $x \sim G_w$ w and n unobservable to buyers
- 3. Solicited bidders submit bids simultaneously.
- 4. Highest bidder wins; ties are broken randomly

Payoffs when p is the winning bid: Winning Bidder: $v_w - p$; Other Buyers: 0; Seller: p - c - ns

Study equilibrium winning bid when s is small.

▶ A pure solicitation strategy is $(n_L, n_H) \in \{1, ..., \overline{N}\} \times \{1, ..., \overline{N}\}$.

▶ A pure solicitation strategy is $(n_L, n_H) \in \{1, ..., \overline{N}\} \times \{1, ..., \overline{N}\}$.

• Conditional on signal x and being solicited, the probability of w = H is

$$\frac{\rho_{H}g_{H}\left(x\right)\frac{n_{H}}{\bar{N}}}{\rho_{L}g_{L}\left(x\right)\frac{n_{L}}{\bar{N}}+\rho_{H}g_{H}\left(x\right)\frac{n_{H}}{\bar{N}}}=\frac{\frac{\rho_{H}g_{H}\left(x\right)\frac{n_{H}}{n_{L}}}{\rho_{L}g_{L}\left(x\right)\frac{n_{H}}{n_{L}}}}{1+\frac{\rho_{H}g_{H}\left(x\right)\frac{n_{H}}{n_{L}}}{\rho_{L}g_{L}\left(x\right)\frac{n_{H}}{n_{L}}}}$$

- ▶ A pure solicitation strategy is $(n_L, n_H) \in \{1, ..., \overline{N}\} \times \{1, ..., \overline{N}\}$.
- Conditional on signal x and being solicited, the probability of w = H is

$$\frac{\rho_{H}g_{H}\left(x\right)\frac{n_{H}}{\bar{N}}}{\rho_{L}g_{L}\left(x\right)\frac{n_{L}}{\bar{N}}+\rho_{H}g_{H}\left(x\right)\frac{n_{H}}{\bar{N}}} = \frac{\frac{\rho_{H}}{\rho_{L}}\frac{g_{H}\left(x\right)}{g_{L}\left(x\right)}\frac{n_{H}}{n_{L}}}{1+\frac{\rho_{H}}{\rho_{L}}\frac{g_{H}\left(x\right)}{g_{L}\left(x\right)}\frac{n_{H}}{n_{L}}}$$

- The ratio $\frac{n_H}{n_I}$ captures "solicitation effect"
- ▶ Solicitation is bad news ("curse") if $\frac{n_H}{n_I} < 1$

Bidding Equilibrium

Bidding Equilibrium

A symmetric and pure **bidding equilibrium** given solicitation strategy (n_L, n_H) is a bidding strategy $\beta : [\underline{x}, \overline{x}] \to \mathbb{R}$ such that for all $x \in [\underline{x}, \overline{x}]$, $b = \beta(x)$ maximizes interim expected payoffs.

Bidding Equilibrium

A symmetric and pure **bidding equilibrium** given solicitation strategy (n_L, n_H) is a bidding strategy $\beta : [\underline{x}, \overline{x}] \to \mathbb{R}$ such that for all $x \in [\underline{x}, \overline{x}]$, $b = \beta(x)$ maximizes interim expected payoffs.

Equivalent to equilibrium of standard common value auction if $n_H = n_L = n$

Example of a Bidding Equilibrium

Example of a Bidding Equilibrium

• Values $v_L = 0$ and $v_H = 1$; Uniform prior, $\rho_H = \rho_L = \frac{1}{2}$

• Signals
$$x \in [\underline{x}, \overline{x}] = [0, 1]$$

• $g_H(x) = 0.8 + 0.4x$ and $g_L(x) = 1.2 - 0.4x$

Example of a Bidding Equilibrium

▶ Values $v_L = 0$ and $v_H = 1$; Uniform prior, $\rho_H = \rho_L = \frac{1}{2}$

• Signals
$$x \in [\underline{x}, \overline{x}] = [0, 1]$$

• $g_H(x) = 0.8 + 0.4x$ and $g_L(x) = 1.2 - 0.4x$

Claim: Let $\bar{N} = 10$ and solicitation strategy $n_L = 6$ and $n_H = 2$. There is a bidding equilibrium in which

$$\beta(x) = 0.4$$
 $\forall x \in [\underline{x}, \overline{x}].$

Claim: $\bar{x} = 1$ has no incentive to overbid atom at 0.4.

Claim: $\bar{x} = 1$ has no incentive to overbid atom at 0.4.

• Interim expected value conditional on $\bar{x} = 1$ and being solicited:

$$\frac{1}{1 + \frac{\rho_H}{\rho_L} \frac{g_H(\bar{x})}{g_L(\bar{x})} \frac{n_H}{n_L}} v_L + \frac{\frac{\rho_H}{\rho_L} \frac{g_H(\bar{x})}{g_L(\bar{x})} \frac{n_H}{n_L}}{1 + \frac{\rho_H}{\rho_L} \frac{g_H(\bar{x})}{g_L(\bar{x})} \frac{n_H}{n_L}} v_H = 0 + \frac{\frac{3}{2}\frac{2}{6}}{1 + \frac{3}{2}\frac{2}{6}} (1) = \frac{1}{3}$$

Claim: $\bar{x} = 1$ has no incentive to overbid atom at 0.4.

• Interim expected value conditional on $\bar{x} = 1$ and being solicited:

$$\frac{1}{1 + \frac{\rho_H}{\rho_L} \frac{g_H(\bar{x})}{g_L(\bar{x})} \frac{n_H}{n_L}} v_L + \frac{\frac{\rho_H}{\rho_L} \frac{g_H(\bar{x})}{g_L(\bar{x})} \frac{n_H}{n_L}}{1 + \frac{\rho_H}{\rho_L} \frac{g_H(\bar{x})}{g_L(\bar{x})} \frac{n_H}{n_L}} v_H = 0 + \frac{\frac{3}{2}\frac{2}{6}}{1 + \frac{3}{2}\frac{2}{6}} (1) = \frac{1}{3}$$

The solicitation effect offsets the informational content of the signal:

$$\frac{n_{H}}{n_{L}}\frac{g_{H}(\bar{x})}{g_{L}(\bar{x})} = \frac{2}{6}\frac{3}{2} = \frac{1}{2}$$

Claim: $\bar{x} = 1$ has no incentive to overbid atom at 0.4.

• Interim expected value conditional on $\bar{x} = 1$ and being solicited:

$$\frac{1}{1 + \frac{\rho_H}{\rho_L} \frac{g_H(\bar{x})}{g_L(\bar{x})} \frac{n_H}{n_L}} v_L + \frac{\frac{\rho_H}{\rho_L} \frac{g_H(\bar{x})}{g_L(\bar{x})} \frac{n_H}{n_L}}{1 + \frac{\rho_H}{\rho_L} \frac{g_H(\bar{x})}{g_L(\bar{x})} \frac{n_H}{n_L}} v_H = 0 + \frac{\frac{3}{2}\frac{2}{6}}{1 + \frac{3}{2}\frac{2}{6}} (1) = \frac{1}{3}$$

The solicitation effect offsets the informational content of the signal:

$$\frac{n_{H}}{n_{L}}\frac{g_{H}(\bar{x})}{g_{L}(\bar{x})} = \frac{2}{6}\frac{3}{2} = \frac{1}{2}$$

Generally, solicitation curse is "overwhelming" if

$$rac{g_{H}\left(ar{x}
ight)}{g_{L}\left(ar{x}
ight)}rac{n_{H}}{n_{L}}<1.$$

Verification II: No Incentive to Undercut Atom

Claim: \underline{x} has no incentive to undercut the atom.

Verification II: No Incentive to Undercut Atom

Claim: \underline{x} has no incentive to undercut the atom.

Expected value conditional on <u>x</u>, conditional on being solicited, and conditional on winning at p^{*} = 0.4 is

1

$$\frac{1}{1+\frac{\rho_{H}}{\rho_{L}}\frac{g_{H}(\underline{x})}{g_{L}(\underline{x})}\frac{n_{H}}{n_{L}}\frac{\pi_{H}(p^{*})}{\pi_{L}(p^{*})}}\nu_{L}+\frac{\frac{\rho_{H}}{\rho_{L}}\frac{g_{H}(\underline{x})}{g_{L}(\underline{x})}\frac{n_{H}}{n_{L}}\frac{\pi_{H}(p^{*})}{\pi_{L}(p^{*})}}{1+\frac{\rho_{H}}{\rho_{L}}\frac{g_{H}(\underline{x})}{g_{L}(\underline{x})}\frac{n_{H}}{n_{L}}\frac{\pi_{H}(p^{*})}{\pi_{L}(p^{*})}}\nu_{H}=\frac{\frac{2}{3}\frac{2}{6}\frac{1}{2}}{1+\frac{2}{3}\frac{2}{6}\frac{1}{2}}}{1+\frac{2}{3}\frac{2}{6}\frac{1}{\frac{1}{2}}}1=0.4$$

Thus, <u>x</u> expects (weakly) positive payoffs from bidding 0.4.

Verification II: No Incentive to Undercut Atom

Claim: \underline{x} has no incentive to undercut the atom.

Expected value conditional on <u>x</u>, conditional on being solicited, and conditional on winning at p^{*} = 0.4 is

$$\frac{1}{1+\frac{\rho_{H}}{\rho_{L}}\frac{g_{H}(\underline{x})}{g_{L}(\underline{x})}\frac{n_{H}}{n_{L}}\frac{\pi_{H}(p^{*})}{\pi_{L}(p^{*})}}\nu_{L} + \frac{\frac{\rho_{H}}{\rho_{L}}\frac{g_{H}(\underline{x})}{g_{L}(\underline{x})}\frac{n_{H}}{n_{L}}\frac{\pi_{H}(p^{*})}{\pi_{L}(p^{*})}}{1+\frac{\rho_{H}}{\rho_{L}}\frac{g_{H}(\underline{x})}{g_{L}(\underline{x})}\frac{n_{H}}{n_{L}}\frac{\pi_{H}(p^{*})}{\pi_{L}(p^{*})}}\nu_{H} = \frac{\frac{2}{3}\frac{2}{6}\frac{\frac{1}{2}}{\frac{1}{5}}}{1+\frac{2}{3}\frac{2}{6}\frac{\frac{1}{2}}{\frac{1}{5}}} 1 = 0.4$$

▶ Thus, <u>x</u> expects (weakly) positive payoffs from bidding 0.4.

• Winning is "good news,"
$$\frac{\Pr[Win|H]}{\Pr[Win|L]} = \frac{\frac{1}{n_H}}{\frac{1}{n_L}} = \frac{\frac{1}{2}}{\frac{1}{6}} = 3.$$

 Bidding in Atoms provides insurance ("hiding in the crowd") given uniform tie-breaking rule.

Whenever n_L/n_L = 1/3 and n_H ≥ 2 there is a bidding equilibrium where all bidders bid b ∈ [1/3, 0.4].

- Whenever ^{n_H}/_{n_L} = ¹/₃ and n_H ≥ 2 there is a bidding equilibrium where all bidders bid b̄ ∈ [1/3, 0.4].
- Complete pooling even with arbitrarily many solicited bidders and even if G_H (x̂) arbitrarily small.

- Whenever ^{n_H}/_{n_L} = ¹/₃ and n_H ≥ 2 there is a bidding equilibrium where all bidders bid b̄ ∈ [1/3, 0.4].
- Complete pooling even with arbitrarily many solicited bidders and even if $G_H(\hat{x})$ arbitrarily small.
- ▶ If n_L = 3n_H and n_H is sufficiently large, there exists no equilibrium in strictly increasing strategies. Atoms are "unavoidable."

- Whenever ⁿ_µ = ¹/₃ and n_H ≥ 2 there is a bidding equilibrium where all bidders bid b̄ ∈ [1/3, 0.4].
- Complete pooling even with arbitrarily many solicited bidders and even if $G_H(\hat{x})$ arbitrarily small.
- ▶ If n_L = 3n_H and n_H is sufficiently large, there exists no equilibrium in strictly increasing strategies. Atoms are "unavoidable."
- Construction is not an equilibrium. Seller's solitication strategy not optimal.

Equilibrium

Equilibrium

A symmetric and **pure strategy equilibrium** consists of a bidding strategy $\beta : [\underline{x}, \overline{x}] \to \mathbb{R}$ and a solicitation strategy (n_L, n_H) such that

(i) β is a bidding equilibrium given solicitation strategy (n_L, n_H) ; (ii) solicitation is optimal,

$$n_{\mathsf{W}} \in \arg \max_{n \in \{1, \dots, \bar{N}\}} \left[E\left[p | n, \mathsf{W}, \beta \right] - c - ns \right].$$

Equilibrium

A symmetric and **pure strategy equilibrium** consists of a bidding strategy $\beta : [\underline{x}, \overline{x}] \to \mathbb{R}$ and a solicitation strategy (n_L, n_H) such that

(i) β is a bidding equilibrium given solicitation strategy (n_L, n_H) ; (ii) solicitation is optimal,

$$n_w \in \arg \max_{n \in \{1, \dots, \bar{N}\}} [E[p|n, w, \beta] - c - ns].$$

An **equilibrium** (without qualifier) allows for mixed solicitation strategy, denoted $\eta_w \in \Delta \{1, ..., \overline{N}\}$.

Existence of Equilibrium: Good News / Bad News

Existence of Equilibrium: Good News / Bad News

- Atoms on the equilibrium path upset standard methods for existence proofs
- In paper, discretize bid set

Existence of Equilibrium: Good News / Bad News

- Atoms on the equilibrium path upset standard methods for existence proofs
- In paper, discretize bid set
- Here: Good News / Bad News

$$\frac{g_{H}(x)}{g_{L}(x)} = \begin{cases} \frac{g_{H}(\bar{x})}{g_{L}(\bar{x})} & \text{if } x \ge \hat{x} \\ \frac{g_{H}(\underline{x})}{g_{L}(\underline{x})} & \text{if } x \le \hat{x} \end{cases}$$

- ► Good News/Bad News: $g_H(x) / g_L(x)$ constant on $[0, \hat{x}]$, $(\hat{x}, \bar{x}]$
- Symmetric Signals: $G_L(\hat{x}) = 1 G_H(\hat{x})$
- Sufficiently Informative: $G_H(\hat{x}) \leq 0.3$

- ► Good News/Bad News: $g_H(x) / g_L(x)$ constant on $[0, \hat{x}]$, $(\hat{x}, \bar{x}]$
- Symmetric Signals: $G_L(\hat{x}) = 1 G_H(\hat{x})$
- Sufficiently Informative: $G_H(\hat{x}) \leq 0.3$

Proposition. Complete Pooling Possible in the Limit Suppose signals are as described before. Then, for all $\{s^k\}$, $\lim_{k\to\infty} s^k = 0$, there exists a sequence of equilibria $\{\beta^k, \eta^k\}$ such that

$$\lim_{k\to\infty} E\left[p|\eta_{H}^{k}, H, \beta^{k}\right] = \lim_{k\to\infty} E\left[p|\eta_{L}^{k}, L, \beta^{k}\right] < \rho_{L}v_{L} + \rho_{H}v_{H}.$$

- ► Good News/Bad News: $g_H(x) / g_L(x)$ constant on $[0, \hat{x}]$, $(\hat{x}, \bar{x}]$
- Symmetric Signals: $G_{L}(\hat{x}) = 1 G_{H}(\hat{x})$
- Sufficiently Informative: $G_H(\hat{x}) \leq 0.3$

Proposition. Complete Pooling Possible in the Limit Suppose signals are as described before. Then, for all $\{s^k\}$, $\lim_{k\to\infty} s^k = 0$, there exists a sequence of equilibria $\{\beta^k, \eta^k\}$ such that

$$\lim_{k\to\infty} E\left[p|\eta_{H}^{k}, H, \beta^{k}\right] = \lim_{k\to\infty} E\left[p|\eta_{L}^{k}, L, \beta^{k}\right] < \rho_{L}v_{L} + \rho_{H}v_{H}.$$

Auction does not become "competitive"

- ► Good News/Bad News: $g_H(x) / g_L(x)$ constant on $[0, \hat{x}]$, $(\hat{x}, \bar{x}]$
- Symmetric Signals: $G_{L}(\hat{x}) = 1 G_{H}(\hat{x})$
- Sufficiently Informative: $G_H(\hat{x}) \leq 0.3$

Proposition. Complete Pooling Possible in the Limit Suppose signals are as described before. Then, for all $\{s^k\}$, $\lim_{k\to\infty} s^k = 0$, there exists a sequence of equilibria $\{\beta^k, \eta^k\}$ such that

$$\lim_{k\to\infty} E\left[p|\eta_{H}^{k}, H, \beta^{k}\right] = \lim_{k\to\infty} E\left[p|\eta_{L}^{k}, L, \beta^{k}\right] < \rho_{L}v_{L} + \rho_{H}v_{H}.$$

- Auction does not become "competitive"
- $G_H(\hat{x})$ can be arbitrarily small, i.e., signals can be arbitrarily informative

Pooling Equilibrium Structure

Pooling Equilibrium Structure

Bidding is step function,

$$\beta^{k}(x) = \begin{cases} \bar{b} & \text{if } x > \hat{x}, \\ \underline{b}^{k} & \text{if } x \le \hat{x}. \end{cases}$$

• With bids $\underline{b}^k < \overline{b}$, and

$$\lim_{k\to\infty}\underline{b}^k < \bar{b} < \rho_L v_L + \rho_H v_H.$$

Pooling Equilibrium Structure

Bidding is step function,

$$\beta^{k}(x) = \begin{cases} \bar{b} & \text{if } x > \hat{x}, \\ \underline{b}^{k} & \text{if } x \le \hat{x}. \end{cases}$$

• With bids $\underline{b}^k < \overline{b}$, and

$$\lim_{k\to\infty}\underline{b}^k < \overline{b} < \rho_L v_L + \rho_H v_H.$$

- ▶ When $s^k \rightarrow 0$, solicitation strategy such that both types
 - solicit unboundedly many bidders
 - end up trading almost surely at \bar{b}

▶ Idea: Given step-function, soliciation strategy (n_H^k, n_L^k) is optimal if

$$\left(G_{L}\left(\hat{x}\right)\right)^{n_{L}^{k}}\left(1-G_{L}\left(\hat{x}\right)\right)\left(\bar{b}-\underline{b}^{k}\right) = s^{k}$$

▶ Idea: Given step-function, soliciation strategy (n_H^k, n_L^k) is optimal if

$$(G_L(\hat{x}))^{n_L^k} (1 - G_L(\hat{x})) \left(\bar{b} - \underline{b}^k\right) = s^k$$
$$(G_H(\hat{x}))^{n_H^k} (1 - G_H(\hat{x})) \left(\bar{b} - \underline{b}^k\right) = s^k$$

▶ Idea: Given step-function, soliciation strategy (n_H^k, n_L^k) is optimal if

$$(G_L(\hat{x}))^{n_L^k} (1 - G_L(\hat{x})) \left(\bar{b} - \underline{b}^k\right) = s^k$$
$$(G_H(\hat{x}))^{n_H^k} (1 - G_H(\hat{x})) \left(\bar{b} - \underline{b}^k\right) = s^k$$

This implies

$$n_{L}^{k} \ln G_{L}\left(\hat{x}\right) + \ln\left(1 - G_{L}\left(\hat{x}\right)\right) = n_{H}^{k} \ln G_{H}\left(\hat{x}\right) + \ln\left(1 - G_{H}\left(\hat{x}\right)\right)$$

Taking limits and re-ordering

$$\lim_{k \to \infty} \frac{n_{H}^{k}}{n_{L}^{k}} = \frac{\ln G_{L}\left(\hat{x}\right)}{\ln G_{H}\left(\hat{x}\right)}$$

▶ Idea: Given step-function, soliciation strategy (n_H^k, n_L^k) is optimal if

$$(G_L(\hat{x}))^{n_L^k} (1 - G_L(\hat{x})) \left(\bar{b} - \underline{b}^k\right) = s^k$$
$$(G_H(\hat{x}))^{n_H^k} (1 - G_H(\hat{x})) \left(\bar{b} - \underline{b}^k\right) = s^k$$

This implies

$$n_{L}^{k} \ln G_{L}\left(\hat{x}\right) + \ln\left(1 - G_{L}\left(\hat{x}\right)\right) = n_{H}^{k} \ln G_{H}\left(\hat{x}\right) + \ln\left(1 - G_{H}\left(\hat{x}\right)\right)$$

Taking limits and re-ordering

$$\lim_{k \to \infty} \frac{n_{H}^{k}}{n_{L}^{k}} = \frac{\ln G_{L}\left(\hat{x}\right)}{\ln G_{H}\left(\hat{x}\right)} < 1$$

From $\frac{g_H(\bar{x})}{g_L(\bar{x})} = \frac{1-G_H(\hat{x})}{1-G_L(\hat{x})}$,

▶ Idea: Given step-function, soliciation strategy (n_H^k, n_L^k) is optimal if

$$(G_L(\hat{x}))^{n_L^k} (1 - G_L(\hat{x})) \left(\bar{b} - \underline{b}^k\right) = s^k$$
$$(G_H(\hat{x}))^{n_H^k} (1 - G_H(\hat{x})) \left(\bar{b} - \underline{b}^k\right) = s^k$$

This implies

$$n_{L}^{k} \ln G_{L}\left(\hat{x}\right) + \ln \left(1 - G_{L}\left(\hat{x}\right)\right) = n_{H}^{k} \ln G_{H}\left(\hat{x}\right) + \ln \left(1 - G_{H}\left(\hat{x}\right)\right)$$

Taking limits and re-ordering

$$\lim_{k \to \infty} \frac{n_{H}^{k}}{n_{L}^{k}} = \frac{\ln G_{L}\left(\hat{x}\right)}{\ln G_{H}\left(\hat{x}\right)} < 1$$

From $\frac{g_H(\bar{x})}{g_L(\bar{x})} = \frac{1 - G_H(\hat{x})}{1 - G_L(\hat{x})},$ $\frac{g_H(\bar{x})}{g_L(\bar{x})} \lim_{k \to \infty} \frac{n_H^k}{n_L^k} = \frac{1 - G_H(\hat{x})}{1 - G_L(\hat{x})} \frac{\ln G_L(\hat{x})}{\ln G_H(\hat{x})}$

▶ Idea: Given step-function, soliciation strategy (n_H^k, n_L^k) is optimal if

$$(G_L(\hat{x}))^{n_L^k} (1 - G_L(\hat{x})) \left(\bar{b} - \underline{b}^k\right) = s^k$$
$$(G_H(\hat{x}))^{n_H^k} (1 - G_H(\hat{x})) \left(\bar{b} - \underline{b}^k\right) = s^k$$

This implies

$$n_{L}^{k} \ln G_{L}\left(\hat{x}\right) + \ln\left(1 - G_{L}\left(\hat{x}\right)\right) = n_{H}^{k} \ln G_{H}\left(\hat{x}\right) + \ln\left(1 - G_{H}\left(\hat{x}\right)\right)$$

Taking limits and re-ordering

$$\lim_{k \to \infty} \frac{n_{H}^{k}}{n_{L}^{k}} = \frac{\ln G_{L}\left(\hat{x}\right)}{\ln G_{H}\left(\hat{x}\right)} < 1$$

 $\begin{array}{l} \blacktriangleright \mbox{ From } \frac{g_{H}(\bar{x})}{g_{L}(\bar{x})} = \frac{1 - G_{H}(\hat{x})}{1 - G_{L}(\hat{x})}, \\ \\ \frac{g_{H}\left(\bar{x}\right)}{g_{L}\left(\bar{x}\right)} \lim_{k \to \infty} \frac{n_{H}^{k}}{n_{L}^{k}} = \frac{1 - G_{H}\left(\hat{x}\right)}{1 - G_{L}\left(\hat{x}\right)} \frac{\ln G_{L}\left(\hat{x}\right)}{\ln G_{H}\left(\hat{x}\right)} < 1. \end{array}$

▶ Idea: Given step-function, soliciation strategy (n_H^k, n_L^k) is optimal if

$$(G_L(\hat{x}))^{n_L^k} (1 - G_L(\hat{x})) \left(\bar{b} - \underline{b}^k\right) = s^k$$
$$(G_H(\hat{x}))^{n_H^k} (1 - G_H(\hat{x})) \left(\bar{b} - \underline{b}^k\right) = s^k$$

This implies

$$n_{L}^{k} \ln G_{L}\left(\hat{x}\right) + \ln \left(1 - G_{L}\left(\hat{x}\right)\right) = n_{H}^{k} \ln G_{H}\left(\hat{x}\right) + \ln \left(1 - G_{H}\left(\hat{x}\right)\right)$$

Taking limits and re-ordering

$$\lim_{k \to \infty} \frac{n_{H}^{k}}{n_{L}^{k}} = \frac{\ln G_{L}\left(\hat{x}\right)}{\ln G_{H}\left(\hat{x}\right)} < 1$$

 $\begin{array}{l} \blacktriangleright \mbox{ From } \frac{g_{H}(\bar{x})}{g_{L}(\bar{x})} = \frac{1 - G_{H}(\hat{x})}{1 - G_{L}(\hat{x})}, \\ \\ \frac{g_{H}\left(\bar{x}\right)}{g_{L}\left(\bar{x}\right)} \lim_{k \to \infty} \frac{n_{H}^{k}}{n_{L}^{k}} = \frac{1 - G_{H}\left(\hat{x}\right)}{1 - G_{L}\left(\hat{x}\right)} \frac{\ln G_{L}\left(\hat{x}\right)}{\ln G_{H}\left(\hat{x}\right)} < 1. \end{array}$

This last observation holds generally.

Step 1: No incentives of overbid \bar{b} if \bar{b} close to $\rho_I v_L + \rho_H v_H$

Step 1: No incentives of overbid \bar{b} if \bar{b} close to $\rho_I v_L + \rho_H v_H$

Seller's optimality implies that:

Step 1: No incentives of overbid \bar{b} if \bar{b} close to $\rho_I v_L + \rho_H v_H$

Seller's optimality implies that:

$$\frac{g_{H}\left(\bar{x}\right)}{g_{L}\left(\bar{x}\right)}\lim_{k\to\infty}\frac{n_{H}^{k}}{n_{L}^{k}}<1.$$

Step 1: No incentives of overbid \bar{b} if \bar{b} close to $\rho_I v_L + \rho_H v_H$

Seller's optimality implies that:

$$\frac{g_{H}(\bar{x})}{g_{L}(\bar{x})}\lim_{k\to\infty}\frac{n_{H}^{k}}{n_{L}^{k}}<1.$$

Therefore

$$\lim_{k \to \infty} E\left[v | \text{solicited, signal } \bar{x} \right] < \rho_L v_L + \rho_H v_H$$

Step 1: No incentives of overbid \bar{b} if \bar{b} close to $\rho_I v_L + \rho_H v_H$

Seller's optimality implies that:

$$\frac{g_{H}\left(\bar{x}\right)}{g_{L}\left(\bar{x}\right)}\lim_{k\to\infty}\frac{n_{H}^{k}}{n_{L}^{k}}<1.$$

Therefore

$$\lim_{k \to \infty} E\left[v | \text{solicited, signal } \bar{x} \right] < \rho_L v_L + \rho_H v_H$$

Step 2: No incentives of undercut $\underline{b}^k \rightarrow \underline{b} < \rho_L v_L + \rho_H v_H$

Step 1: No incentives of overbid \bar{b} if \bar{b} close to $\rho_I v_L + \rho_H v_H$

Seller's optimality implies that:

$$\frac{g_{H}\left(\bar{x}\right)}{g_{L}\left(\bar{x}\right)}\lim_{k\to\infty}\frac{n_{H}^{k}}{n_{L}^{k}}<1.$$

Therefore

$$\lim_{k \to \infty} E\left[v | \text{solicited, signal } \bar{x} \right] < \rho_L v_L + \rho_H v_H$$

Step 2: No incentives of undercut $\underline{b}^k \rightarrow \underline{b} < \rho_L v_L + \rho_H v_H$

Observe that

$$\lim_{k \to \infty} E\left[v | \text{solicited, signal } \bar{x}, \text{ win at } \bar{b} \right] = \rho_L v_L + \rho_H v_H$$

Proposition. Full Separation Possible in the Limit.

Suppose signals are either good news or bad news. For every $\varepsilon > 0$, there is some $R^{SOL}(\varepsilon)$ such that whenever $\frac{g_H(\bar{x})}{g_L(\bar{x})} \ge R^{SOL}(\varepsilon)$ and $\{s^k\} \to 0$, there exists <u>a</u> sequence of equilibria (β^k, η^k) such that

$$\lim_{k \to \infty} \inf E\left[p|\eta_{H}^{k}, H, \beta^{k}\right] \geq v_{H} - \varepsilon,$$
$$\lim_{k \to \infty} \sup E\left[p|\eta_{L}^{k}, L, \beta^{k}\right] \leq v_{L} + \varepsilon.$$

Proposition. Full Separation Possible in the Limit.

Suppose signals are either good news or bad news. For every $\varepsilon > 0$, there is some $R^{SOL}(\varepsilon)$ such that whenever $\frac{g_H(\bar{x})}{g_L(\bar{x})} \ge R^{SOL}(\varepsilon)$ and $\{s^k\} \to 0$, there exists <u>a</u> sequence of equilibria (β^k, η^k) such that

$$\lim_{k \to \infty} \inf E\left[p|\eta_{H}^{k}, H, \beta^{k}\right] \geq v_{H} - \varepsilon,$$
$$\lim_{k \to \infty} \sup E\left[p|\eta_{L}^{k}, L, \beta^{k}\right] \leq v_{L} + \varepsilon.$$

 Proposition holds also for general signals if set of adminissible bids is a grid which is sufficiently fine.

Proposition. Full Separation Possible in the Limit.

Suppose signals are either good news or bad news. For every $\varepsilon > 0$, there is some $R^{SOL}(\varepsilon)$ such that whenever $\frac{g_H(\bar{x})}{g_L(\bar{x})} \ge R^{SOL}(\varepsilon)$ and $\{s^k\} \to 0$, there exists <u>a</u> sequence of equilibria (β^k, η^k) such that

$$\lim_{k \to \infty} \inf E\left[p|\eta_{H}^{k}, H, \beta^{k}\right] \geq v_{H} - \varepsilon,$$
$$\lim_{k \to \infty} \sup E\left[p|\eta_{L}^{k}, L, \beta^{k}\right] \leq v_{L} + \varepsilon.$$

 Proposition holds also for general signals if set of adminissible bids is a grid which is sufficiently fine.

Proposition. Full Separation Possible in the Limit.

Suppose signals are either good news or bad news. For every $\varepsilon > 0$, there is some $R^{SOL}(\varepsilon)$ such that whenever $\frac{g_H(\bar{x})}{g_L(\bar{x})} \ge R^{SOL}(\varepsilon)$ and $\{s^k\} \to 0$, there exists <u>a</u> sequence of equilibria (β^k, η^k) such that

$$\lim_{k \to \infty} \inf E\left[p|\eta_{H}^{k}, H, \beta^{k}\right] \geq v_{H} - \varepsilon,$$
$$\lim_{k \to \infty} \sup E\left[p|\eta_{L}^{k}, L, \beta^{k}\right] \leq v_{L} + \varepsilon.$$

 Proposition holds also for general signals if set of adminissible bids is a grid which is sufficiently fine.

Conclusion

- Introduced common values auction with bidder solicitation
- Endogenous relationship between value and number of bidders: Identified "solicitation curse"
- Bidding equilibria with state-dependent number of bidders are different
- Multiple limit outcomes (in a "two-signal" example):
 - Perfect pooling
 - (Partial) separation
- ► Auction with Solicition "in between" Auction and Search:
 - Large Standard Auction: Always (Partial)Separation
 - Sequential Search: Always Separation

Conclusion

- Introduced common values auction with bidder solicitation
- Endogenous relationship between value and number of bidders: Identified "solicitation curse"
- Bidding equilibria with state-dependent number of bidders are different
- Multiple limit outcomes (in a "two-signal" example):
 - Perfect pooling
 - (Partial) separation
- Auction with Solicition "in between" Auction and Search:
 - Large Standard Auction: Always (Partial)Separation
 - Sequential Search: Always Separation

Outlook and Related Questions

Relation of number of solicited bidders and type? Who solicits more? Can there be a "solicitation blessing"?

Conclusion

- Introduced common values auction with bidder solicitation
- Endogenous relationship between value and number of bidders: Identified "solicitation curse"
- Bidding equilibria with state-dependent number of bidders are different
- Multiple limit outcomes (in a "two-signal" example):
 - Perfect pooling
 - (Partial) separation
- Auction with Solicition "in between" Auction and Search:
 - Large Standard Auction: Always (Partial)Separation
 - Sequential Search: Always Separation

Outlook and Related Questions

- Relation of number of solicited bidders and type? Who solicits more? Can there be a "solicitation blessing"?
- What happens when number of solicited bidders observable? Incentive to signal? Trade-offs?

Lemma. Given any solicitation strategy (η_L, η_H) such that each type solicits at least two bidders, i.e., $\eta_L(1) = \eta_H(1) = 0$. Then, in every bidding equilibrium, $\frac{g_H(x_1)}{g_L(x_1)} > \frac{g_H(x_2)}{g_L(x_2)}$, implies $\beta(x_1) \ge \beta(x_2)$ for almost all x_1, x_2 .

Lemma. Given any solicitation strategy (η_L, η_H) such that each type solicits at least two bidders, i.e., $\eta_L(1) = \eta_H(1) = 0$. Then, in every bidding equilibrium, $\frac{g_H(x_1)}{g_L(x_1)} > \frac{g_H(x_2)}{g_L(x_2)}$, implies $\beta(x_1) \ge \beta(x_2)$ for almost all x_1, x_2 .

Counterexample: Suppose $\eta_H(1) = 1$ and $\eta_L(1) = 0$. Then, in every bidding equilibrium, $\frac{g_H(x_1)}{g_L(x_1)} > \frac{g_H(x_2)}{g_L(x_2)}$, implies $\beta(x_1) < \beta(x_2)$ for almost all x_1 , x_2 .

Lemma. Given any solicitation strategy (η_L, η_H) such that each type solicits at least two bidders, i.e., $\eta_L(1) = \eta_H(1) = 0$. Then, in every bidding equilibrium, $\frac{g_H(x_1)}{g_L(x_1)} > \frac{g_H(x_2)}{g_L(x_2)}$, implies $\beta(x_1) \ge \beta(x_2)$ for almost all x_1, x_2 .

Counterexample: Suppose $\eta_H(1) = 1$ and $\eta_L(1) = 0$. Then, in every bidding equilibrium, $\frac{g_H(x_1)}{g_L(x_1)} > \frac{g_H(x_2)}{g_L(x_2)}$, implies $\beta(x_1) < \beta(x_2)$ for almost all x_1 , x_2 .

Intuition: Consider
$$\frac{g_H(\underline{x})}{g_L(\underline{x})} = 0$$
 and $\frac{g_H(\overline{x})}{g_L(\overline{x})} = \infty$