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Abstract

In this paper we explore how the �rm can use word of mouth marketing and advertising to

optimally target information to di�erent groups of consumers in order to maximize the di�usion

of information about its product. We show that the �rm may bene�t from the commitment

to not reveal information to the low-type group throughout the information di�usion process.

On the other hand, if such a commitment is not possible, the �rm will choose to reveal some

information to the low-type consumers. Finally, we explore the question of when a �rm may

choose to invest resources by communicating product information to the consumers versus

having the consumers engage in costly search on their own.

1 Basic model

1.1 No advertising case

Suppose that a monopolist is selling a product to a mass 1 of agents. An agent i may be one of two
types high and low θ = h, l. The fraction of high types in the population φ. The �rm's objective
is to maximize the fraction of the population which receives information m∗ about its product.
We shall denote this as S∗. Assume no advertising for the moment. agents can �nd out about the
product in two ways. First they may undertake costly search to learn about the product themselves.
Second they may costlessly hear about the product from another person who themselves will incur a
cost to pass the information to them. Note once an agent has found out about the product through
either channel they are able to pass on information about it themselves.

Timing

At time t = −1 each type chooses whether to obtain information m∗ about a �rm's product,
this information is hard. The cost ch, cl are distributed uniformly on [0, c]. However the �rm can
increase the costs for each type above this level if it wishes. From time t = 1 onwards individuals
mix at rate λ. During each meeting an individual may pass on the hard information m∗ at a cost k
or pass on no information ∅ at zero cost. Assume this is done simultaneously during the meeting
so that each individual has the ability to do so without seeing the other individuals information
�rst. This assumption makes the analysis more tractable.
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Social Utility

The social utility derived from the meeting is a function of the beliefs the other agent has about
the agent's type. In particular agent i receives utility

Ui (bj (θi = h|m∗, t)) (1)

if agent i passes a message m∗ at time t where bj (θi = h|m∗, t) is the other agent j′s belief that
agent i is a high type upon receiving the information m∗ and similarly

Ui (bj (θi = h|∅, t)) (2)

if the agent does not pass information where bj (θi = h|∅, t) is the belief if no signal (denoted by
∅) is sent. Given our notions of high and low types we assume U ′ > 0. Also note the signaling
bene�t at a time t is

∆U (t) = Ui (bj (θi = h|m∗, t))− Ui (bj (θi = h|∅, t)) (3)

which is the di�erence between sending a signal and not sending a signal at that timet.

Growth of the informed population

Denote the fraction of types who become informed at t = −1 by ϕh, ϕl where these are going
to be endogenously determined in equilibrium. The fraction of the population which are informed
S (t) evolves over time as agents mix at rate λ and pass on information. The initial condition is
S0 = ϕhφ+ ϕl (1− φ) and the rate of change of the informed population is given by:

dS

dt
= λS (t) (1− S (t)) (4)

This results in the following path for S (t):

S (t) =
1

1 +
(

1
S0
− 1
)
e−λt

(5)

which continues to grow until the bene�cial impact of passing the �rm's message is less than the
cost of doing so. Hence S (t) stops growing when ∆U (t∗) = k which de�nes the extent of the
di�usion S∗ = S (t∗). The �rm's objective is to maximize the extent of this di�usion.

Beliefs

At t = 0 beliefs are

bj (θi = h|m∗, 0) =
ϕhφ

ϕhφ+ ϕl (1− φ)
(6)

and

bj (θi = h|∅, 0) =
(1− ϕh)φ

(1− ϕh)φ+ (1− ϕl) (1− φ)
. (7)

Beliefs change over time as the message di�uses through the population. The belief when a person
receives a signal at a time t is given by

bj (θi = h|m∗, t) =
S (t)− S0

S (t)
[bj (θi = h|∅, 0)] +

S0

S (t)
[bj (θi = h|m∗, 0)] (8)

= bj (θi = h|∅, 0) +
S0

S (t)
[bj (θi = h|m∗, 0)− bj (θi = h|∅, 0)] . (9)
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The beliefs upon not receiving a signal do not change over time and hence are given by

bj (θi = h|∅, t) = bj (θi = h|∅, 0) =
(1− ϕh)φ

(1− ϕh)φ+ (1− ϕl) (1− φ)
.

Extent of di�usion

The di�usion of the signal thus stops when the marginal value of signaling equals the marginal
cost of passing on the information:

U (bj (θi = h|m∗, t))− U (bj (θi = h|∅, 0)) = k (10)

for the moment assume U is linear

U (bj (θi = h|m∗, t))− U (bj (θi = h|∅, 0)) (11)

= u [bj (θi = h|m∗, t)− bj (θi = h|∅, t)]

= u
S0

S (t)
[bj (θi = h|m∗, 0)− bj (θi = h|∅, 0)] = k

where u is just a constant which we can normalize to 1. Hence the di�usion stops at

S∗ =
S0

k
[bj (θi = h|m∗, 0)− bj (θi = h|∅, 0)] (12)

S∗ (ϕh, ϕl) =
1

k
(ϕhφ+ ϕl (1− φ))

[
ϕhφ

ϕhφ+ ϕl (1− φ)
− (1− ϕh)φ

(1− ϕh)φ+ (1− ϕl) (1− φ)

]
(13)

=
φ

k

[
ϕh − (1− ϕh)

ϕhφ+ ϕl (1− φ)

(1− ϕh)φ+ (1− ϕl) (1− φ)

]
Ignoring the ex ante incentive constraints we could take �rst order conditions wrt ϕh, ϕl.

dS∗

dϕh
=

1

k

[
1− (1−ϕh)φ

(1−ϕh)φ+(1−ϕl)(1−φ)+
ϕhφ+ϕl(1−φ)

(1−ϕh)φ+(1−ϕl)(1−φ) −
φ(1−ϕh)(ϕhφ+ϕl(1−φ))
((1−ϕh)φ+(1−ϕl)(1−φ))2

]
(14)

=
1

k

[
(1− φ) (1− ϕl)

(1− ϕh)φ+ (1− ϕl) (1− φ)
+

(1− φ) (1− ϕl) (ϕhφ+ ϕl (1− φ))

((1− ϕh)φ+ (1− ϕl) (1− φ))
2

]

=
1

k

[
(1− ϕl) (1− φ)

((1− ϕh)φ+ (1− ϕl) (1− φ))
2

]
≥ 0 if ϕl < 1 then > 0

dS∗

dϕl
= −φ

k
(1− ϕh)

[
(1− φ) [(1− φh)φ+ (1− ϕl) (1− φ) + ϕhφ+ ϕl (1− φ)]

((1− ϕh)φ+ (1− ϕl) (1− φ))
2

]
(15)

= −φ
k

(1− ϕh) (1− φ)

((1− ϕh)φ+ (1− ϕl) (1− φ))
2 ≤ 0 if ϕh < 1 then < 0

It is pretty quick to see this is maximized provided that ϕh = 1, independent of ϕl. However
if the ex ante information acquisition constraint binds for some high types then ϕh < 1 and we
need to worry about the �rst order condition on ϕl. When ϕh < 1 we have that dS∗

dϕl
< 0 hence the
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optimal policy results in ϕl = 0 provided that ϕl does not help alleviate the ex ante incentives to
acquire information which we still need to check.

Ex Ante Incentives

Of course the previous section ignores agents decision to acquire information at t = −1. This
may mean that ϕh is bounded strictly below 1. If this is the case we may wish to check whether
ϕl = 0 maximizes S∗. Hence it will be at least weakly optimal to set ϕl = 0. Hence, we can restrict
attention to strategies which specify S0 where the set of informed individuals is 100% high types
or if S0 > φ then all high types are informed and the remainder are low types. We can denote the
�rm's strategy as just a cut o� ch such that all high types with c ≤ ch collect information at the
ex ante stage and all c > ch do not. We will �rst analyse the case where ch ≤ 1 where 0% of low
types acquire information.

Going back to the information accumulation stage, the decision to acquire the information at
this stage depends on the total signaling bene�t the agent will acquire during the di�usion process.
If this bene�t is above their cost c then the agent acquire information. Denote the time at which
the di�usion process ends by t∗. The signaling bene�t for an agent is then

V = λ

(ˆ t∗

0

(
1− S (t)

1− S0

)(
S0

S (t)
[bj (θi = h|m∗, 0)− bj (θi = h|∅, 0)]− k

)
dt

)
(16)

where 1−S(t)
1−S0

is the probability of remaining uninformed at time t for an individual uninformed at
time 0. It may be further simpli�ed by making a change of variable using

dS

dt
= λS (t) (1− S (t))

dt =
dS

λS (t) (1− S (t))

making this substitution for dt and substituting B = bj (θi = h|m∗, 0)− bj (θi = h|∅, 0) we get:

V =

ˆ S∗

S0

(
1

1− S0

)
1

S (t)

(
S0

S (t)
[bj (θi = h|m∗, 0)− bj (θi = h|∅, 0)]− k

)
dS (17)

=
1

1− S0

ˆ S∗

S0

[
B · S0

S2 (t)
− k

S (t)

]
dS (where

B · S0

S∗
= k)

=

(
k

1− S0

)(
S∗
[
− 1

S

]S∗

S0

− [lnS]
S∗

S0

)

=

(
k

1− S0

)(
S∗ − S0

S0
+ ln

S0

S∗

)
Writing out the �rm's optimization problem:

max
ϕh,ϕl

S∗ (ϕh, ϕl)

subject to

ϕhc ≤ V (ϕh, ϕl)

ϕlc ≤ V (ϕh, ϕl)
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0 ≤ ϕh ≤ 1

0 ≤ ϕl ≤ 1

Proposition 1. The optimal strategy for the �rm has the following characteristics:

0 <ϕh ≤ 1

ϕl = 0

Proof. First, we already showed that dS∗

dϕh
≥ 0, dS

∗

dϕl
≤ 0 (Equations 14). Now consider V as a

function of S0 and S∗ we will show that dV
dϕl

< 0.

V (S∗, S0) =

(
k

1− S0

)(
S∗ − S0

S0
+ ln

S0

S∗

)
now taking the derivative dV

dϕx
where ∂S0

∂ϕx
> 0 for x = l, h and from earlier ∂S∗

∂ϕl
≤ 0, ∂S

∗

∂ϕh
≥ 0

dV

dϕl
=

dV

dS0

dS0

dϕl
+
∂V

∂S∗
∂S∗

∂ϕl

=

 k
(

1
1−S0

)2 (
S∗ 1

S0
− 1 + lnS0 − lnS∗

)
+
(

k
1−S0

)(
− 1
S2
0

BS0

k + 1
S0

)
 dS0

dϕl

+

(
k

1− S0

)[
1

S0
− 1

S∗

]
∂S∗

∂ϕl

=

[
k

(1− S0)
2
S2
0

{
(S∗ − S0) (2S0 − 1) + S2

0

(
ln
S0

S∗

)}]
︸ ︷︷ ︸

?

dS0

dϕl︸︷︷︸
+

+

(
k

1− S0

)[
1

S0
− 1

S∗

]
︸ ︷︷ ︸

+

∂S∗

∂ϕl︸︷︷︸
−

We have immediately that
(

k
1−S0

) [
1
S0
− 1

S∗

]
> 0. Hence we will show that dV

dS0
< 0 to prove that

it is dV
dϕl

< 0.

Note that dV
dS0

is negative provided that

2S0 − 1 < 0

which is true for S0 <
1
2 .

If S0 ≥ 1
2 , we need that

(S∗ − S0) (2S0 − 1) + S2
0

(
ln
S0

S∗

)
< 0

S2
0

(
ln
S0

S∗

)
< (S∗ − S0) (1− 2S0)

ln S0

S∗

S∗

S0
− 1

<

(
1

S0
− 2

)
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Now consider the left hand side, where x = S∗

S0
> 1.

ln 1
x

x− 1
=
− lnx

x− 1

d
(
− ln x
x−1

)
dx

=
1

x− 1

(
lnx

x− 1
− 1

x

)
which is greater than 0 for x > 1 if

lnx

x− 1
− 1

x
> 0

lnx > 1− 1

x

which is known relation for the natural log. Hence the left-hand side of the above is increasing in
S∗

S0
and an upper-bound on the left-hand side is given by −

ln 1
S0

1
S0
−1 and we need only check that

−
ln 1

S0

1
S0
− 1

<
1

S0
− 2

− ln y − (y − 2) (y − 1) < 0.

And now we show that it is an decreasing function of y for 1 ≤ y ≤ 2 (↔ 1
2 ≤ S0 ≤ 1)

d (− ln y − (y − 2) (y − 1))

dy
= −1

y
− 2y + 3

=
−2y2 + 3y − 1

y

=
(1− 2y) (y − 1)

y

< 0 for 1 ≤ y ≤ 2

and note that
lim
y→1

[− ln y − (y − 2) (y − 1)] = 0.

Hence, − ln y − (y − 2) (y − 1) < 0, which shows that dV
dS0

< 0 . This completes the proof that
∂V
∂ϕl

< 0.

Finally, 0 ≤ S0(ϕ∗H , 0) ≤ S∗ and dV
dS0

< 0.

lim
S0→0

V = lim
S0→0

(
k

1− S0

)(
BS0

k

1

S0
− 1 + lnS0 − ln

BS0

k

)
= k

(
B

k
− 1− ln

B

k

)
> 0.

lim
S0→S∗

V = 0

Hence, V (ϕ∗h, 0) ≥ 0. This proves that ϕ∗l = 0.
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The result here is that the strategy which maximizes the di�usion of the �rm's message is to
restrict information to the socially low type agents by choosing ϕl = 0 and minimizing the costs
for the socially high type agents such that 0 < ϕh ≤ 1. Note that this result will also continue to
hold with a mass of agents who have 0 search costs provided there are not so many of them that
there are more than S∗.

Time Discounting

Next we show that the timing of the information di�usion matters. We revisit the �rm's opti-
mization problem with the discount factor βt = exp(−rt), where r is the discount rate. Writing
out the �rm's optimization problem:

max
ϕh,ϕl

ˆ t∗

0

dS

dt
e−rtdt

subject to

ϕhc ≤ V (ϕh, ϕl)

ϕlc ≤ V (ϕh, ϕl)

0 ≤ ϕh ≤ 1

0 ≤ ϕl ≤ 1

Proposition 2. When discount rate r is large enough, ϕl > 0.

Proof. Let

R (ϕl, ϕh) =

ˆ t∗(ϕh,ϕl)

0

(
S0 +

dS

dt
e−rt

)
dt

We have immediately that

lim
r→0

R (ϕl, ϕh) = S∗ (ϕl, ϕh)

lim
r→∞

R (ϕl, ϕh) = S0 (ϕl, ϕh) .

When r = 0; R (ϕl = 0, ϕh) > R (ϕl, ϕh) for all ϕl > 0 since dS∗

dϕl
≤ 0 (Equations 14). When

r =∞; R = S0 (ϕl = 0, ϕh) < R = S0 (ϕl, ϕh) for any 0 < ϕh ≤ 1.
Furthermore,

dR (ϕl, ϕh)

dr
= −

ˆ t∗(ϕh,ϕl)

0

dS

dt
te−rtdt < 0 for all 0 ≤ ϕl, ϕh ≤ 1.

Hence, for any ϕl > 0, there exists exist r∗(ϕl) such that for all r > r∗(ϕl), R (ϕl = 0, ϕh) <
R (ϕl > 0, ϕh). (this is a little loose)...

Hence, there is a tradeo� between the amount of information di�usion (S∗) and the timing of
di�usion � as long as the �rm is not too patient (r is su�ciently large), it may want to disseminate
the information even to the low type agents by choosing ϕl > 0.
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1.2 Advertising

Consider an advertising technology which is informing people randomly in the population at rate
γ. (This is essentially a model of mass advertising). When this is the case we can write the relation
for S (t) as follows:

dS

dt
= (λS (t) + γ) (1− S (t))

dt =
dS

(λS (t) + γ) (1− S (t))

We can then go through a similar procedure as earlier to calculate the utility from signaling. Doing
that in the case that the �rm advertises all the time one can get:

V = λ

(ˆ t∗

0

(
1− S (t)

1− S0

)(
S0

S (t)
[bj (θi = h|m∗, 0)− bj (θi = h|∅, 0)]− k

)
dt

)
(18)

= λ

(ˆ S∗

S0

(
1

1− S0

)
1

(λS (t) + γ)

(
S0

S (t)
B − k

)
dS

)
one can calculate the closed form for V as follows

V =
λ

1− S0

(
S0B

ˆ S∗

S0

1

S (t) (λS (t) + γ)
dS − k

[
1

λ
ln (λS (t) + γ)

]S∗

S0

)
(19)

=
λ

1− S0

(
S0B

[
1

γ
ln

(
S (t)

λS (t) + γ

)]S∗

S0

− k
[

1

λ
ln (λS (t) + γ)

]S∗

S0

)

=
λ

1− S0

(
kS∗

[
1

γ
ln (S (t))− ln (λS (t) + γ)

]S∗

S0

− k
[

1

λ
ln (λS (t) + γ)

]S∗

S0

)

=
k

1− S0

(
S∗
λ

γ
ln

(
S∗

S0

)
− (1 + λS∗) ln

(
λS∗ + γ

λS0 + γ

))
However it is relatively straightforward from the earlier expression to show that dV

dγ < 0.

Proposition 3. dV
dγ < 0

Proof. Let

V = λ

(ˆ S∗

S0

(
1

1− S0

)
1

(λS (t) + γ)

(
S0

S (t)
B − k

)
dS

)
Taking the derivative with respect to γ holding S0 and S∗ constant

dV

dγ
= −λ

(ˆ S∗

S0

(
1

1− S0

)
1

(λS (t) + γ)
2

(
S0

S (t)
B − k

)
dS

)
< 0

every term to the right of the integral is positive hence the derivative is negative. As was shown
earlier one wants to set ϕl = 0 and ϕh has high as possible. Advertising therefore reduces V and
hence ϕh.

Hence advertising acts to crowd out the incentives for agents to search for information ex ante.
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